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Introduction 6 
 7 

Cotton is the most important source of natural fiber in the world with an important impact in the 8 

economies of several countries. With the rapid increase in world population, cotton production 9 

has to be significantly increased to meet the increasing demands (Zaidi, Mansoor et al. 2018). 10 

One of the proven methods for increasing crop yield without increasing cultivated land is the 11 

selection and breeding high yielding varieties. The breeding process involves the selection of 12 

varieties based on their productivity and resistance to stress as displayed in the field 13 

environment. High throughput phenotyping methods are aimed at increasing the throughput of 14 

the phenotyping process which has been acknowledged to be the bottleneck in the translation of 15 

genetic knowledge into useful production in the field (Furbank and Tester 2011). 16 

High throughput phenotyping methods use imaging techniques to quantify the traits of plants, 17 

which brings about a significant improvement in efficiency and accuracy when compared to the 18 

manual measurement of traits. This is the result of the use of automated imaging systems for 19 

image acquisition, and image processing algorithms for the processing of the acquired image 20 

data. An increased number of phenotyping studies using a variety of imaging techniques for the 21 

quantification of structural parameters, chemical constituents, and physiological processes in 22 



plants have been conducted in recent years (Li, Zhang et al. 2014, Hawkesford and Lorence 23 

2017).   24 

Since image processing and computer vision are crucial steps in the high throughput phenotyping 25 

pipelines, the technology used in phenotyping studies closely follows the development of 26 

techniques and algorithms in these fields. One of the recent developments in computer vision is 27 

the successful use of machine learning models using deep convolutional neural networks for the 28 

classification and localization of real world objects in images.  This development has been 29 

successfully utilized in plant phenotyping studies in particular (Pound, Atkinson et al. 2017), and 30 

in agricultural research in general (Kamilaris, Prenafeta-Boldú et al. 2018). 31 

In case of cotton phenotyping, some of the structural traits of importance that are amenable to 32 

high throughput phenotyping techniques include plant height, flower counts, boll counts, and 33 

internodal distances (Sun, Li et al. 2017, Thompson, Thorp et al. 2019), which are traits that 34 

provide information about health, growth status, and ultimately, the yield that can be acquired 35 

from a plant. 36 

This study explores the use of deep learning methods for the detection of key plant organs in 37 

cotton, followed by further processing of the acquired results to derive semantic information 38 

about the cotton plant. As a preliminary study, the detection of cotton bolls and main stalk nodes 39 

is studied, followed by the use of this minimal information to derive detailed information about 40 

the plant structure. The parameters that we attempt to derive include boll production per node, 41 

internodal distances, and branch angles. 42 

A pre-trained region-based convolutional neural network (CNN), Faster R-CNN  is used in this 43 

study for the detection of cotton parts (Ren, He et al. 2015). In a region-based CNN, the region 44 



proposal network generates region proposals and the convolutional network classifies the 45 

proposed regions into labels, thus detecting and localizing objects in the image.  46 

The acquisition of detailed structural information about a plant with complex canopy structure 47 

such as that of a cotton plant requires the use of three-dimensional imaging technology. While 48 

deep learning models with two-dimensional images have been used for the counting of bolls as 49 

estimates of yield before (Li, Cao et al. 2017, Fue, Porter et al. 2018), the accurate estimation of 50 

bolls per plant or bolls per plot using these techniques faces the challenge of occlusion and of 51 

keeping track of repeated counts. The three-dimensional imaging techniques, designed to 52 

overcome these challenges, come with their own set of disadvantages in the form of excessive 53 

requirement of time and resources both for acquisition and processing of data. The ability of 54 

using two-dimensional images to acquire the distribution of plant parts in three-dimensional 55 

space is studied in the current study. In order to overcome the limitations of two-dimensional 56 

RGB images alone, a test is also conducted using a Microsoft Kinect v2, which consists of an 57 

RGB and depth cameras in the same device. Depth images have been previously successfully 58 

used in phenotyping projects for cotton as well as for other crops (Jin and Tang 2009, Jiang, Li et 59 

al. 2016).  60 

We find that the use of RGB images alone can provide us valuable information about the 61 

structural parameters of a plant through the detection of key plant parts using deep learning 62 

models. Some limitations of the RGB images, such as the loss of depth information of the pixels 63 

is overcome by RGB-depth images acquired from a few angles around the plant. This approach 64 

is proposed as a faster alternative to complete three-dimensional imaging of plants, where two-65 

dimensional images with depth values are processed using deep learning and traditional 66 

computer vision methods to acquire a detailed semantic structural information about the plant.  67 



Methods 68 
 69 

Data acquisition 70 
 71 

Images of cotton plants were acquired using a Fujifilm X-A10 camera (Fujifilm Holdings 72 

Corporation, Tokyo, Japan) from a cotton field in Watkinsville, GA, USA (33.86631°N, 73 

−83.54592°E) in the autumn of 2018. The images were acquired with a focus on a single plant 74 

such that the structure of the plant could be observed from the side view images. Four side view 75 

images were acquired for each plant from angles that were 90 degrees apart from one another. A 76 

top view image was also acquired for each plant. 77 

Several cotton plants were uprooted and placed in pots that were then transferred to the 78 

laboratory in Athens, GA, USA. For this preliminary analysis, one plant was selected and placed 79 

on a turntable, and RGB images were taken using a Fujifilm X-A10 camera  from four angles 90 80 

degrees apart from one another. The imaging was conducted against a consistent blank 81 

background to simplify subsequent segmentation and analysis. Similarly, four RGB images and 82 

four depth images at angles 90 degrees apart were collected using a Microsoft Kinect v2 83 

(Microsoft Corporation, WA, USA). Matlab Image Acquisition Toolbox (Mathworks, MA, 84 

USA) was used for collection of images using Kinect v2. The RGB (1920x1080 pixels) and 85 

depth (512x424 pixels) images were taken with minimal interval between the triggers to ensure 86 

that the plant or the sensor position did not alter significantly. This was important to ensure the 87 

proper alignment of depth and RGB images for the registration of depth values and RGB pixels. 88 

Camera calibration for RGB-depth projection 89 
 90 

The Kinect v2 sensors were calibrated for deriving the intrinsic and extrinsic parameters based 91 

on Zhang’s method using Matlab for acquisition and processing (Zhang and intelligence 2000). 92 



This method involves acquiring multiple images of a planar calibration pattern of known 93 

dimensions such that the points on the plane can be easily detected or manually selected for the 94 

estimation of projective geometry and camera transformation matrices. 95 

Object detection model 96 
 97 

A faster RCNN model was trained using 90 images collected in the field, which included images 98 

from side views as well as from the top view as described before. Before being used for training, 99 

the images were cropped so that the cotton plant in view would occupy most of the image pixels. 100 

Bolls visible in the background but belonging to the plants not on the focus were not labelled as 101 

bolls. The model for node detection was also trained using 90 images, which included images 102 

collected in the field as well as images that were collected in the laboratory using the uprooted 103 

images mentioned before. This was done to increase the visibility of main stalk nodes in the 104 

training dataset since the imaging angle could be well controlled in the laboratory. Only the main 105 

stalk nodes were labelled, where a node was defined as the point where any branch meets the 106 

main stalk. Labeling was done with the annotation tool LabelImg. 107 

In case of object detection applications using deep learning networks, the use of pretrained 108 

models has been found to be effective, especially in cases where a limited number of images can 109 

then be used to fine-tune the model for the identification of the desired objects. A faster R-CNN 110 

model with inception resnet v2, pretrained on the Microsoft COCO dataset (Lin, Maire et al. 111 

2014) was was trained separately for the node and boll detection models using the TensorFlow 112 

implementation of Faster-RCNN (Huang, Rathod et al. 2017). Data augmentation was performed 113 

by flipping the images horizontally and vertically, and by adjustment to saturation, brightness, 114 

and contrast. Adam optimization algorithm was used with the default configuration parameters 115 

for updating the network weights, and a constant learning rate of 0.9 × 10−4 was used. In order 116 



to prevent overfitting, L2 regularization with a weight of 0.001 was applied to the training 117 

process. The batch size was fixed to 2  118 

When using the models for detection of plant parts, a score threshold of 0.5 was used to 119 

determine if a proposed bounding box would be considered an actual detection of the plant part. 120 

In case of the boll detection model, some large objects were detected by the model to be bolls; a 121 

threshold based on the standard deviation of the bounding box areas from the mean area was 122 

used to remove these large bounding boxes from the list of detected bolls. In case of node 123 

detection, the model sometimes ended up detecting nodes not on the main stalk as the main stalk 124 

nodes. This is to be expected since the main stalk nodes and the nodes on the branches of a 125 

cotton plant are visually indistinguishable, and the only way to tell them apart is to know the 126 

location of the main stalk. Here, the non-main stalk nodes were removed by using a method 127 

similar to the one used with the bounding boxes from the boll detection network. Assuming that 128 

the main stalk nodes will lie sequentially on the image, we can assume that the branch nodes can 129 

be observed as outliers in the overall distribution. This assumption was used in this experiment 130 

and was found to give satisfactory results. 131 

Boll counts and structural parameters from RGB images 132 
 133 

The trained models for boll and node detection were used with these images. The plant was 134 

placed on a turntable and images were taken from four sides, 90 degrees apart. Two images taken 135 

at 180 degrees apart were used for the preliminary analysis discussed here.  136 

The cotton plant pixels were segmented from the background by first converting the image to the 137 

L*a*b color space, where empirically determined threshold values were used to create a 138 

segmentation mask. The segmented binary image was then skeletonized, so that the lines 139 



representing the branches were one pixel thick. Additionally, the base of the plants was marked 140 

with unique colored markers for identifying the root base, or the ground level. The distance 141 

between the two colored markers was measured in order to estimate a distance per pixel value on 142 

each image.  143 

Based on the detected nodes and the distance per pixel value estimated with the help of the 144 

colored markers, node distances were estimated and compared with the ground truth data 145 

acquired manually. 146 

Branch angles in the two-dimensional plane visible in the RGB images were estimated by 147 

deriving the angles made by the skeletons of the main stalk and the branch skeleton. Each boll 148 

detected on an image was assigned to a main stalk node detected based on the shortest distance 149 

through the skeleton pixels. In this process, we start at the mid point of a bounding box 150 

representing a cotton boll, and we move one pixel at a time through the skeleton and find the 151 

shortest paths to each node that has been detected on the image. Finally, we consider that the 152 

node with the shortest distance to this particular boll is the node where the branch producing this 153 

particular boll arises from. Figure 1 has a visual description of this image analysis procedure. On 154 

the skeleton image showing the bounding boxes corresponding to detected bolls (red boxes) and 155 

main stalk nodes (blue boxes), the main stalk is shown in green, and the paths from the bolls to 156 

the main stalk and then to the nearest main stalk node are shown in red. On the right panel, the 157 

estimated angles made by the branches originating at each detected node are shown. 158 



 159 

Figure 1 The assignment of bolls to different nodes is based on the estimation of distances from 160 

the bolls to the nodes along the skeleton image (center panel), the angle between the branch and 161 

the main stalk on each node is estimated assuming a planar geometry for the plant (right panel) 162 

Elimination of repeated counts in multiple views 163 
 164 

The problem of repeated counting of the same boll in case of multiple images of the same plant 165 

was also studied during this experiment. To do this, the coordinates of the bolls detected in view 166 

1 and view2 were converted to distance units so that the image resolution would not be an issue. 167 

To do this, the measured distance between the visible colorful markers placed at the base of the 168 

plants was used. As shown in figure 1, the markers are brightly colored 3D-printed objects and 169 

could be readily segmented using color based thresholding. The mm-per-pixel value was 170 

estimated using the distance between the two markers on an image, and this value was used to 171 

estimate real world coordinates for each boll and node, with the origin of the coordinate system 172 

placed at the base of the plant between the two markers. These distance coordinates were used in 173 

calculating the distances in the images, for example, the internodal distance, which was 174 



calculated as the Euclidean distance between two consecutive detected nodes on the main stalk. 175 

To remove the repeated counting of the same boll, two images taken from angles 180 degrees 176 

apart were used, and one of the images was flipped vertically by 180 degrees so that the 177 

coordinate system would align with the other image. After that the repeated counts were detected 178 

using a threshold value for intersection over union for the boll bounding boxes from the two 179 

images. 180 

Kinect data processing 181 
 182 

The RGB images obtained with the Kinect v2 were processed identically with the RGB images 183 

as described above. Differences included the need to crop the images for using them with the 184 

object detection network, and then the need to project those bounding boxes for the detected 185 

plant parts back to the original RGB image. This had to be done because our aim was to register 186 

the depth values from the Kinect onto the RGB image so that we could have a sparse distribution 187 

of the depth of pixels for the RGB image. This information was used to calculate the coordinates 188 

of the detected nodes and bolls in 3D space.  189 

 190 

Results 191 
 192 

Boll and node detection 193 
 194 

Figure 2 shows the bolls and nodes detected on images taken from the two views that were 195 

aligned at an angle of 180 degrees to each other. The image on the left panel (view 1) shows a 196 

total of 13 bounding boxes for the bolls (shown in red) and 13 bounding boxes for the nodes 197 

(shown in blue) that were detected by the models, and the image on the right panel (view 2) 198 



shows a total of 16 bounding boxes for the bolls and 11 bounding boxes for the nodes detected 199 

by the models. 200 

 201 

Figure 2 Images showing the locations of main stalk nodes and cotton bolls detected by the 202 

object detection model; the detected cotton bolls are shown within red bounding boxes whereas 203 

detected nodes are shown within blue bounding boxes whereas detected nodes are shown within 204 

blue bounding boxes 205 

In figure 3, a view of the point cloud data representing the cotton plant is shown with each node 206 

and boll labelled with a number. The number shown in red circles on the main stalk is a 207 

convention for numbering the main stalk nodes that will be used in this paper. The first main 208 

stalk node with a visible branch is numbered to be “node 1”, and subsequent main stalk nodes are 209 

numbered with increasing numbers. While the node with the first visible branch in the studied 210 

plant is not strictly node number one in the conventions of botanical studies (Zhao, Oosterhuis et 211 



al. 2000), the numbering adopted here is used for convenience. The bolls are given numbers 212 

according to the node number at which the branches producing the bolls originate.  213 

For example, a boll with the number 10 beside it is produced by the fruiting branch originating at 214 

node number 10 at the main stalk. 215 

 216 

Figure 3 A view of the point cloud data of the cotton plant showing the main stalk nodes 217 

numbered from the bottom, and also showing the respective cotton bolls produced by branches 218 

originating in the main stalk node numbers shown next to the bolls; a total of 17 bolls assigned 219 

to 15 individual nodes are shown 220 

When we compare the total number of nodes with the detected nodes (fig. 2), we see that 13 out 221 

of 15 main stalk nodes are detected and localized by the model for view 1 whereas the ratio is 11 222 



out of 15 for view 2. Similarly, 4 bolls are missed by the detection model for view 1 and 1 boll is 223 

missed for view 2. 224 

Internodal distance 225 
 226 

In figure 4, we see the intermodal distances estimated from both images, and the right panel 227 

shows the ground truth distances. Figure 3 shows the plot of the estimated distances from view 1 228 

against the ground truth distances. In creating the plot, the intermodal distances in the ground 229 

truth data were adjusted to match the detected nodes in the model derived values so that an 230 

unmatched plotting could be avoided. For example, if the model derived value sums up the 231 

intermodal distance between node 6 and node 8 and has a single value, the ground truth distances 232 

are accordingly summed so that the values are matched with one another. Figure 5 shows a plot 233 

of the internodal distances against the ground truth, where we see a coefficient of correlation 234 

value of 0.9821. Quantitative evaluation of branch angle estimation was not conducted for this 235 

study, and the visual results were shown in figure 1. 236 

 237 

  238 

  239 



 240 

Figure 4 The internodal distances estimated using a distance per pixel value estimated using 241 

measured distance between two points in each image (left and middle); A view of the point cloud 242 

data representing the cotton plant displaying the ground truth nodes with the node numbers and 243 

internodal distances (right) 244 

 245 



 246 

Figure 5 Internodal distances estimated from the RGB image against the ground truth 247 

 248 

Boll assignment to main stalk nodes 249 
 250 

In figure 6, the assignment of bolls to the different main stalk branch nodes is shown graphically. 251 

The information is presented on table 1, where we can see that although the assignment of bolls 252 

works for a majority of bolls, the total number of bolls per node estimated using this method is 253 

inaccurate for most of the nodes. This is a result of the assumption of planar geometry, where we 254 

assume that all bolls lie on one plane and simply find the shortest path to the main stalk through 255 

the branches visible on the image. This leads to errors, especially in cases where the bolls are 256 

close to the main stalk, where although the path to the main stalk seems to be short on a 257 

particular two-dimensional image, the boll may in fact be on an extended branch that grows 258 

perpendicular to the image plane. This problem can be mitigated by using depth images, where 259 



the position of bolls in three-dimensional space can be estimated, and based on similarly 260 

estimated position of the branches and the nodes, faulty assignments can be eliminated.  261 

 262 

 263 

Figure 6 The assignment of bolls to main stalk nodes for view1 (left) and view2(right). The main 264 

stalk is shown with a green line and the branches connecting the bolls to the main stalk are 265 

marked in red 266 

 267 

Another possibility for the improvement of this result is the creation of a combined algorithm to 268 

use multiple views of the plant together to have a unified assignment of the detected bolls to the 269 

main stalk nodes. The presence of main stalk nodes that are not detected by the node detection 270 

model is another issue that needs to be addressed. It is, however, easily addressed by finding the 271 

points where the path from a boll to the main stalk touches the main stalk.  272 



 273 

Table 1 Assignment of the detected bolls to the main stalk nodes; column 2 shows the ground 274 

truth, column 3 and 4 show the result from the assignment algorithm 275 

Node No. of bolls Detected bolls (view1) Detected bolls (view2) 
1 0 0 0 
2 3 3 2 
3 3 1 3 
4 1 0 0 
5 2 1 1 
6 1 1 Not detected 
7 1 3 3 
8 1 Not detected Not detected 
9 1 Not detected Not detected 
10 1 3 3 
11 1 1 1 
12 0 0 0 
13 1 0 0 
14 1 2 2 
15 0 0 Not detected 

 276 

Boll count estimation from multiple views 277 
 278 

In order to consolidate the bolls detected from multiple views of the same cotton plant, we need a 279 

method to recognize the same boll detected on different images, and then count the uniquely 280 

identified bolls as new bolls. This is a problem of tracking the bolls and detecting repeated 281 

counts. Using the coordinates of the bolls based on the transformation of image coordinates to 282 

real life distances described before, the bounding boxes were projected to the real world 283 

coordinates as shown in figure 7. We can see that the bounding boxes towards the top of the 284 

image, corresponding to the same bolls detected on the two views, have bounding boxes that 285 

have overlapping areas, but the bounding boxes from the same boll appear further apart towards 286 

the base of the plant, for example, at the lower left of the plot. If we assume that the bounding 287 

boxes that have an overlap correspond to the same boll, we have a total count of 19 bolls, which 288 



helps to eliminate the underestimation of boll count derived from a single image, but is still 289 

inaccurate when compared to the ground truth. However, the method of detecting repeated 290 

counts is not entirely flawed as we can see that a boll detected only on one image can be isolated 291 

from those that have repeated detection, as can be seen in case of the bolls on the lower right. 292 

 293 

Figure 7 Boll bounding boxes from the two views of the cotton plant projected into a coordinate 294 
plane where the units are in mm. The origin of the coordinate system is assumed to be at the base 295 
of the cotton plant. 296 

 297 

RGB and depth images from Kinect v2 298 
 299 



 300 

Figure 8 RGB images acquired from the Kinect v2 showing the depth values from the low-resolution depth image in red (left); 301 
nodes (green bounding boxes) and bolls (blue bounding boxes) detected on the RGB images. The two images on the upper left are 302 
from view1 and the lower two images are from view2 (180 degree apart). The average depth of a boll or node is calculated by 303 
averaging the depth values that lie within a bounding box on the projected images. The upper right image is the point cloud 304 
derived from a single depth image and the corresponding RGB image. The lower right plot shows the internodal distances 305 
estimated from the Kinect data plotted against the ground truth distances 306 

 307 

The internodal distances calculated from the average coordinates for each node are plotted against the 308 

ground truth distances in figure 8. Here, the coefficient of correlation is comparable to the coefficient of 309 

correlation obtained using only the RGB images, but we see a significant reduction in the root mean 310 

square error, which means that the prediction accuracy of the model based on the Kinect v2 data is higher 311 

than the model based on the RGB images alone. 312 



The process used for the detection of repeated counts in case of RGB images was also used with the 313 

Kinect data. Figure 9 shows the plot of the coordinates of the bounding boxes representing the cotton 314 

bolls detected on two images taken from two sides of the plant. The plot is on the X-Y coordinate plane, 315 

showing the superior accuracy achieved when using the Kinect data. When pairing the points according to 316 

a threshold value based on the standard deviation of the distance from the point to its nearest neighbor, we 317 

can find 16 unique bolls detected using the two views. Using a single view would provide us with 14 and 318 

13 counts respectively for view1 and view2.  319 

Conclusion 320 
 321 

This paper discussed a preliminary study for the extraction of plant phenotypic parameters using deep 322 

learning methods with two-dimensional images for detection of plant parts, and the subsequent use of this 323 

information for the calculation of plant parameters. The results show that this approach can be useful in 324 

extracting a set of plant traits that are only possible with the use of three-dimensional imaging. For 325 

example, promising results were obtained for the detection of main stalk and main stalk nodes, which can 326 

be useful for the derivation of plant health and growth status. Similarly, the assignment of cotton bolls to 327 

a specific node was also attempted. The detection of plant parts and their placement in two or three-328 

dimensional space can be useful for reconstruction of the whole plant based on this data. For example, the 329 

information on node location, branch angles, and the number of bolls per main stalk node can be used to 330 

construct a rough parametric model of a plant. The use object detection models implemented in this study 331 

can be extended to the detection of other plant parts such as branch tips and flowers. The reconstruction 332 

of the parametric model of a plant could be a useful substitute for three-dimensional scanning which is 333 

expensive both in terms of data collection and processing. We also found that the augmentation of two-334 

dimensional RGB images using depth data can increase the accuracy of the structural traits that we 335 

attempted to derive in this study. 336 

 337 
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